Ravensburgh Castle revisited: the Ravensburgh Castle Hillfort Project 2012–present

Ravensburgh Castle Hillfort (Grid Reference: TL 0995 2950) is located c. 10 km west of Hitchin and 1.2 km south-west of Hexton village, on the borders of Hertfordshire and Bedfordshire. The Icknield Way lies 1.5 km to the south. The wooded hillfort, at c. 6.6 ha, is the largest in the Chilterns, situated on the Upper Cretaceous Chalk sequence and lying on the western half of a plateau surrounded by steep-sided dry valleys except on the east and south-east. The ramparts are impressive, made more so by the steepness of the surrounding slopes. The fine main gate, with substantial hollow way, is located at the north-western corner above the northern extremity of the steep Claypit Hole, with a second entrance at the south-eastern corner. The site was planted with trees c. 1908; before then it was clear Chiltern chalk downland. There have been episodes of tree removal in the south-east sector as a result of major wind-throw. The site is entirely private access.

The earliest reference to Ravensburgh appears to be by Francis Taverner in 1640 and William Stukeley visited the site in 1724. Small, controversial, ‘diggings’ took place in the 1940s, but, on a much larger scale, selective excavations in the southern half of the site were led by John Moss-Eccardt and James Dyer in 1964, and James Dyer between 1970 and 1975. However, probably through lack of finance, no excavation report nor detailed topographical plan were produced.

The present initiative, the ‘Ravensburgh Castle Hillfort Project’, emanates from an enquiry by Dr James Dyer to the Hillfort Study Group in 2009 for assistance with the production of a report on the excavations. The present author, the chair of the study group at the time, subsequently met with Dyer with a view to begin a programme of work. This eventually began, initially on a preparatory basis, but with the support of the former landowner and the then English Heritage, work properly began in 2012 under the independent aegis of Dr Ian Brown. After Dyer’s untimely death in late 2012, the project continued, receiving support from the executors of his estate. Change of ownership of the Hexton Estate and the various virus lockdowns have resulted in unavoidable delays to the project. The on-site survey season is also restricted owing to the hillfort being used for pheasant rearing, but with the valuable support of the present new owners, Historic England and funders (see acknowledgements), the project is now once again proceeding.
Overall, the project has seven aims:

1) To locate the whereabouts of notes, plans and photographs from the excavations and other relevant information on the site
2) To ascertain the whereabouts of the finds from the excavations
3) To produce reports on the pottery, bone and other finds from the excavations
4) To undertake a complete topographical survey of the hillfort
5) To undertake selected geophysical surveys where feasible
6) To investigate the availability of Lidar and other survey techniques
7) To complete a report on the 1964–1975 excavations and subsequent surveys, in recognition of Dyer’s service to archaeology

The first stage of work has been completed; the field papers, plans and photographs located with assistance from the Dyer estate. Lidar survey has been provided by the Chilterns Conservation Board. The finds from the 1964 excavations had been transferred to, and stored in, the North Hertfordshire District Council Museum Resource Centre in Hitchin. These comprised three large boxes of predominantly pottery and bone, with, in addition, a reconstructed La Tène angular bowl and some decorated and other fragments. The finds from the 1970s excavations were deposited in Luton Museum, comprising 42 boxes of pottery and bone, with some lithics. These have been sorted and are now under detailed analysis. The excavations unearthed a fine La Tène brooch, with a weaving comb, with possible bird-like form, found within fallen tree roots by Dyer in 1990.

The pottery appears to be coarse ware of late Iron Age date (c. 100 BC to AD 43) with some later Roman ware but it is possible that there could also be some of the middle Iron Age. Bone appears, at present, to be mostly of sheep or goat, pig and cattle, with some bird and horse, but analysis continues. The proportions of these domestic animals will be interesting at Ravensburgh, as there is data from nearby Chiltern and Vale of Aylesbury sites, notably Ivinghoe Beacon and Pitstone Hill respectively, which will allow comparisons to be made. Human bone can also be scattered about hillfort sites, and there is some evidence of this at Ravensburgh.

No accurate topographical survey of the earthworks was undertaken during the excavations, and, thus, a detailed Total Station (Geodolite 506) survey began in 2013. The overgrown western ramparts proved substantial, forming a coherent line along the western course to the north-western entrance. They comprise a substantial inner rampart, although internally now little more than an intermittent scarp, a marked, but discontinuous, medial ditch, and a smaller outer second bank. This bank has a possible, and again discontinuous, outer ditch or shelf, with, in places, a possible counterscarp bank above the steep slopes falling to the Claypit Hole below. The main inner western rampart increases in height and width towards the entrance, with its inner face continuing as a shallow scarp, but steep outer face.

The north-western entrance, although much disturbed, still assumes an imposing prospect, marked by a winding hollow way route to the coomb below. On the north-west side of this hollow way is a dominant small mound; a possible Bronze Age tumulus. The main rampart on the south side of the gate has a marked out-turning of the bank and continues as a slight in-turn on the northern side, above which, and forming an integral part of the main bank, is a large mound, probably another Bronze Age tumulus. The rampart sequence is complex at this point, with up to three banks at the north-western apex. Although the outer appears truncated into the neighbouring field, geophysics has not confirmed this. Another tumulus, now a buried feature, may also be present just outside the site at this apex.

Survey during 2017 of the eastern side of the hillfort proved it to be far more complex than it appears. The interior bank, although extremely overgrown, is well-preserved, rising to c. 3 m plus in an unbroken line to the north-east apex of the site, but with an area of significant slumping of the bank outwards. This is a particular feature of some chalk hillforts, notable being Liddington Castle on the downs above Swindon in Wiltshire. A degraded second bank and possible counterscarp bank, both with filled-in ditches follow on the east. Possible linear dykes appear associated with the north-east and south-west apexes.

A magnetometer survey of a c. 0.6ha segment of the south-eastern hillfort was undertaken in 2015 (detailed in the report of I.P. Brooks of Engineering Archaeological Services Ltd (EAS Client Report 2015/10)) in an area of past wind-throw. Although most of the anomalies recorded were somewhat slight, a series of coherent patterns emerged, including possible quarry hollows and a seemingly large inner enclosure, c. 38m by 32m, directly opposite the south-eastern entrance, with possible in-turned entrance and post-holes. Within this enclosure is a circular anomaly which could mark the position of a roundhouse of c. 7.5 m diameter. As this enclosure appears to cut off access into the hillfort from the south-eastern gate, it must be assumed that it is of earlier

Selection of pottery and bone from the 1970s excavations © James Dyer Estate
date than the main enclosure, and a Bronze Age date cannot be discounted. Two other circular anomalies were recorded of c. 16.65 m and 15.8 m diameter to the east. Whilst these dimensions appear large in terms of mean roundhouse size (c. 6–11 m is more usual), such larger dimensions have been found elsewhere, for example at Liddington Castle. However, ring ditches of Bronze Age barrows are another possibility. The paucity of evidence of pits on the site may also indicate a possible pastoral nature. Investigations continue.

Acknowledgements
Particular thanks to Ian Brooks of Engineering Archaeological Services, consultant to the project, Lisa Brown and Clare Randall. Also, the former landowner, Patrick Cooper and present owner Gallia Grimston, staff of Historic England (notably David Kenny), Professor Chris Gosden and the Chilterns Conservation Board. The project has been possible due to generous support from Historic England, the Marc Fitch Fund (bone analyses), the former Robert Kiln Charitable Trust, the Council for British Archaeology (East) and the Francis Coales Charitable Foundation. Also, thank you to staff of the North Hertfordshire District Council Museums Service, Luton Museum Service and the Executors of Dr James Dyer’s estate.

Ian Brown (ian.brown@keble.oxon.org), Honorary Research Associate, Institute of Archaeology, University of Oxford; and Matthew Bamborough, Independent Researcher and Research Assistant to the project

Between the mountains and the sea: a new monument complex on the Cumbrian coast

The hot summer of 2018 which facilitated the discovery of cropmark sites of major prehistoric monuments in the Boyne Valley, Ireland, also affected Cumbria. Google Earth satellite imaging from 30 June 2018 has revealed details of an extensive array of Neolithic ceremonial monuments in the south-west of the county. Only a few of these have been reported previously, and then only in part. The complex includes eight pit and ditched circular sites, two substantial enclosures and several cursus monuments. The principal array of sites runs from south of Bootle for 11 km to the town of Millom. All lie north-west, west and south of Black Combe, a mountain massif overlooking the Cumbrian coast.

The roughly circular enclosures range in size from 30 m to over 70 m in diameter. These sites all show evidence for having internal circuits of large pits, post- or stone-holes; they also have between one and three entrances. The smallest of these enclosures overlies part of the cropmark of a 148 m long by 50 m wide north–south aligned post and ditch-defined cursus c. 180 m west of Whicham Beck. This cursus has a rounded terminus at its north end.

A double-ditched enclosure, near New Buildings, around 5 km south-east of Bootle, is sub-circular, with a south-west to north-east diameter of over 80 m. It bears a similarity in shape, entrances and orientation to Dowth Henge in the Brú na Bóinne World Heritage Site. Under the pitch and buildings of Millom Rugby League Football Club, a second, similar, embanked enclosure can be identified. It is circular, with a bank around 8 m wide, enclosing an area of over 97 m in diameter. It has a single entrance facing east towards the southern Furness peninsula, but modern buildings obscure
its northern bank. Two east–west aligned linear ditches lie to its north: another possible cursus site.

Traces of ditched cursus monuments occur at two sites in addition to those noted above. One lies north-west of Kirkcanton village, and consists of twin ditches that run north-east from Whicham Beck for, in the case of the south-east ditch, some 250 m. This south-east cursus ditch bisects one of the pit and ditched circular enclosures. The north-west cursus ditch appears to terminate at two standing stones with cup marks known as the Giant's Grave. Just over 1 km due south of these stones lie the traces of a substantial 700 m east–west orientated earthwork at Kirkcanton Haws: LiDAR shows that this continues west towards the sea.

The second ditched cursus site, at Sewell, north of Millom, is trapezoid shaped and around 310 m in length. It is orientated upon Black Combe's summit ridge (and potentially the midsummer sunset), visible from here to the north-west. The remains of a large, previously unrecorded trapezoidal, east–west aligned cairn lie 400 m south of the summit of this mountain at 587 m OD. This site, denuded of stone for a medieval beacon platform just to its north, has an inturned entrance in its southern revetment, indicating that it may have had internal structures. Two km north-east of this cairn lies a 15 m diameter circular cairn on White Combe's summit, again stripped of stone, this time for shelters built on it.

Within the Sewell cursus is an approximately 65 m diameter circular segmented or causewayed ditched monument, with a projection in the north-west part of its ditch circuit, and internal pit, post and/or stone holes. These anomalies include a series of pits internal to the circumference of the site's ditch, similar to the other segmented ditched enclosures.
described above, but much closer here to the perimeter ditches. Other pits, post- or stone- holes occur around in this area, including beyond the cursus ditches. A small circular ditched site lies within the south-east terminus of the Sewell cursus, and a small concentric circular ditched site, which contains a large central feature, occupies a separate enclosure just outside, and to the north-east of, this terminus. There is no clear north-west terminus for the cursus; a stream named Furnace Beck may have provided this.

The large, ditched enclosure within the Sewell cursus has a 22 m gap in the north-east ditch circuit, with the putative remains of a short palisade in it, a narrow gap in the adjacent (north-east) cursus ditch beyond it, and further pit, post or stone holes visible as cropmarks beyond this ditch. This large gap indicates a potential for viewing moonrise and sunrise settings on foresights in the hills and mountains of the Lake District and Furness to the north-west, north-east, and east. The northern posthole array also suggests a focus in this direction: a feature (along with the site’s north-eastern perimeter gap) replicated at Swinside stone circle, 6.75 km to the north.
The features of this enclosure also bear comparison with the earliest phase of Stonehenge and other ‘formative henges’ of the middle Neolithic, and the curved ‘bulge’ or projection recalls recently discovered complex ditched enclosures in the Boyne Valley in Ireland, and the northern henge at Thornborough in North Yorkshire. Sewell lies at around 6 m OD, only 900 m west of a major low water crossing of the Duddon estuary, suggesting that this location was a nodal position near converging routeways. Perhaps the accurate observation, recording and prediction of tides (probably within a 12 m+ range in the case of this estuary in the Neolithic) were of some significance to its builders, users and visitors.

Studies of satellite imaging of the Furness peninsula, east of the Duddon, have not so far revealed any further comparable monuments to these examples near Black Combe. Excavations at Williamson’s Moss and Monk Moors, near Bootle, have revealed extensive evidence of stone working and wood-use in the Mesolithic, and Neolithic features and pottery, but no monuments. Recent archaeological work has revealed evidence for early 4th millennium BC farming at Stainton Quarry, in Furness.

This south-west Cumbrian complex of monuments sites indicates that this coastal landscape was centrally important to the Neolithic of the Irish Sea and northern England. Lying adjacent to a suggested maritime haven on Furness’s Walney Island, it would have been easily accessible to groups of travellers from across Britain, Ireland and the Irish Sea. A key reason for this density of sites may lie in the distinctive mountain landmark and viewpoint of Black Combe and the high fells of the Lake District to the north, a magnet for Neolithic seekers of stone for axe blades in the early Neolithic, and a powerful focus for appropriate approach, performance, reverence and commemoration expressed here in monumental form. Other Cumbrian monuments with possible links to Ireland include the embanked henge at Mayburgh in the Eden Valley, and rock art motifs at Long Meg, Glassonby and Copt Howe, Langdale.

All the sites described are easily visible on Google Earth satellite imagery. Although a few of them were part-confirmed in a 2016 study of aerial and LiDAR images in the western Lake District by Alison Deegan in a mapping project for the Lake District National Park Authority, the cursus monuments were not recognized as such. There are plans to set up a long-term project to undertaken geophysical surveys and further research, with appropriate help and funding. Further details, including research plans, can be found via: https://stonehengere-loaded.co.uk

Steve Dickinson (stevearchaeologist@gmail.com), Independent Researcher

Notice of AGM and Europa conference

We will be holding our 2022 AGM at 3.25pm on 18th June, as part of our Europa conference at Bournemouth University. An agenda and papers will be available from our website in advance.

The Europa conference this year celebrates the achievements of Professor Eszter Bánffy in the field of European prehistory. The full programme and booking details are available on the website. We hope to see many of you there!
The Prehistoric Society 2021

This report covers the period of January to December 2021, which was another unusual year for everyone as the Covid-19 pandemic continued. In-person events were replaced with online activities allowing us to reach more diverse and often larger audiences than usual; in particular, through our new Global Pasts online lectures. This series features local experts telling us the story of the past in their area. It emerged from the experience of the pandemic allowing archaeologists to engage with lectures beyond their own geographical areas and the desire to amplify the voices of more diverse global experts. In 2020 many grants that were awarded were delayed and the same has been the case in 2021. This year also saw the launch of our new website and associated rebranding giving the society a fresh new feel.

Lectures, Meetings and Study Tours

In spite of the pandemic the Society has continued to fulfil its commitment to reach a wide range of regional audiences and to promote its aims and objectives through varied lectures, conferences, and tours albeit, primarily, online. In March 2021, our annual day school went online for the first time. Chaired by our vice-president Melanie Giles, the audience were transported to the Yorkshire Wolds for an exploration of its many barrows. The day featured a packed agenda of excellent talks and attracted an impressively large audience, one participant offered the following comment: "Wonderful day! Thank you! ... I’m so pleased that lockdown has given me the opportunity of experiencing this!". Our 2022 day school, in honour of John Coles will also be held online.

The number of collaborative events organised with other archaeological bodies and societies has been increasing for the past few years. The pandemic led to a mixed economy of online and in-person events, as different groups handed the situation differently. Joint lectures were given with the Cambridge, Devon, London and Middlesex, Welwyn and Yorkshire archaeological societies and we hosted a lecture with the Wiltshire Museum. In addition, we sponsored a session at the Experimental Archaeology Conference, supported the Iron Age Research Student Symposium, hosted a lecture on Peggy Piggott following the release of The Dig on Netflix, took part in the Being Human Festival with a panel event on genes. Sue Hamilton delivered the annual Pitt Rivers lecture and the Sara Champion lecture was delivered by Tom Booth. A growing number of our lectures are available to view on YouTube.

Our Global Pasts lecture series is completely free and open to everyone, allowing both members and the public more broadly a glimpse into the archaeology of every continent: so far, we have visited South Africa, Peru and New Zealand in the expert hands of Prof Shadreck Chirikure, Dr Ana Cecilia Mauricio, and Dr Dilyss Johns and Prof Geoff Irwin.

Europa Prize

Our Europa conference, in honour of Prof Colin Haselgrove, finally took place online. As well as a fascinating range of papers, attended by a large and active audience, we also had an amazing carnyx performance of an original composition titled Metamorphosis, written for the event and performed by Letty Stott.

Research Grants

The situation with Covid-19 has continued to impact on our research grant awardees. Research grants were awarded in February 2020 and again in February 2021 – some recipients have been able to use their grants and others are still waiting for the right moment.

In February 2021 research grants were awarded to Kerry Allen to investigate radiocarbon offsets in marine molluscs, Rob Dinnis and Jennifer French for their excavations at Wogan Cavern, Pembrokeshire, Susanna Harris to explore Early Bronze Age bone curation (she was also awarded the Leslie Grinsell Prize), Tim Malim for geophysical survey and excavation at Old Oswestry hillfort (he was also awarded the James Dyer Prize), to Mik Markham, for the photographic survey and audit of Neolithic stone tools in South West England, and to Eoin Parkinson, for a survey of Malta’s ‘forgotten’ megalithic monuments (he also received the Bob Smith Prize). The Collections Study award went to Alison Roberts, Jennifer Foster and Courtney Nimura, for their study of John Evans and the Hallstatt collections at the Ashmolean Museum.

Our SUERC Award has enabled Gary Lock to date samples from Moel y Gaer, Bodfari and Peter Slaughter for dates to aid research on the intertidal zone at Swalecliffe, Kent. No conference funding was awarded due to the on-going pandemic.

The Annual General Meeting for 2020/21

The AGM was once again held online in October rather than at the Europa. We plan to revert to having the AGM in person as part of the Europa in 2022.

The President reported on another successful year, providing details of the Society’s core activities, publications, lectures, and conferences, where many of the society’s digital outreach initiatives really shone. Our continued thanks were extended to Tessa Machling for her exceptional social media work that continues to entertain and inform members and non-members alike.

The proposed rise in subscription rate rise came in this year helping to ensure the financial future of the society. The President thanked all Council and members who have assisted with events during the year. Warm thanks were offered to retiring officers and Council members: Vice President Melanie...
Giles, and council members Jodie Lewis and Sophia Adams. In addition, the president also thanked Courtney Nimura who stepped down from her role as deputy editor of PPS and Dani Hoffman who stepped down as the editor of PAST.

The following officers and members of Council were elected and re-elected:

President: Prof Clive Gamble
Vice-Presidents: Dr Joanna Brück, Dr Eileen Wilkes, Prof Linda Hurcombe, Dr Jackie Mulville
Treasurer: Dr Clare Randall
Secretary: Dr Rachel Crellin
Managing Editor/Editor of PPS: Dr Julie Gardiner
Editor PAST: Dr Susan Greaney
Editor, Prehistoric Society Research Papers Series: Dr Mike Allen
Book Reviews Editor: Pippa Bradley and Dr Helen Chittock
Meetings Secretary: Dr Matthew Knight
Conservation Co-Ordinator: Dr Jane Sidell
Council: Dr Richard Brunning, Dr Helen Chittock, Dr Peter Clark, Dr James Cole, Dr Susan Greaney, Dr Susanna Harris, Mr Rob Hedge, Dr Felicity McDowall, Dr Ben Roberts, Dr Anne Teather, and Annabell Zander

The Baguley Award

The Baguley Award (for best paper in Proceedings of the Prehistoric Society 86) was awarded to Dr Susan Greaney and colleagues for their paper ‘Tempo of a mega-henge: a new chronology for Mount Pleasant, Dorchester, Dorset’.

Publications

During 2020, the Society published Volume 87 of the Proceedings of the Prehistoric Society, which contained 13 refereed papers covering topics such as hot stone technology, copper mining, and woolen textile production. As usual, three editions of PAST, the Society’s newsletter, were published during the year under the editorship of Dani Hoffman and Susan Greaney.

In addition, the society published two new research paper volumes under the editorship of Mike Allen. Neolithic Stone Extraction in Britain and Europe by Peter Topping and Fragments of the Bronze Age by Matthew Knight. We also re-issued a paperback version of Is There a British Chalcolithic?

Advocacy

The Society continued its active role in advocacy led by Jane Sidell. We have continued to offer support to Kilmartin Museum, Old Oswestry Hillfort, and the Alexander Keiller Museum. We have written in support of Stoke Museum Services and Swindon Museum and Art Gallery and the archaeology departments at Sheffield, Chester and Worcester all of whom were faced with cuts. We continue to foster links with the European Association of Archaeologists in the wake of Brexit.

Our new logo, visual branding and website, will help the Society position itself as a forward-looking and modern organisation, and to connect with our audiences. Thank you to Courtney Nimura, and our graphic designer Julietta Molina (Design and Tea) who have worked hard to deliver this project.

Membership and Administration

Membership is healthy and the Society’s online and social media presence (on Facebook and Twitter) has grown with over 18,000 members on Facebook and over 6,500 on Twitter.

As ever, the Society would not be able to function without a large number of individuals giving freely of their time and knowledge to organise events and to deliver the results of their fieldwork and research. The Society offers sincere thanks to all those who have helped throughout the year, and especially to its administrator, Tessa Machling.

The Sara Champion Memorial Lecture 2021

On the 20 October 2021, we had the pleasure of hearing about the latest ancient DNA research from a vital and active member of the archaeological research community, Dr Thomas Booth. Tom is Senior Laboratory Research Scientist at the Francis Crick Institute in London, having studied and completed his PhD at Sheffield, a strong reminder of the high quality of graduates from this university. Tom’s research sees him grappling with the challenges of sampling physical human remains and their scientific analysis. In a detailed and informative presentation Tom brought us up-to-date with results of recent ancient DNA (aDNA) research on prehistoric remains from Britain dating to the Neolithic, Chalcolithic and Bronze Age. Tom made the subject accessible to a broad audience while instilling an appreciation for the complexities of the data and interpretation of the results.

Current understanding sees a Western European Hunter-Gatherer (‘Western Hunter-Gatherer’) ancestry dominating across Europe in the Mesolithic. Two further distinctively divergent ancestries are visible from about 5000 BC, one linked to herders in the Western Pontic Steppe (‘Western Steppe’) and the other in Anatolia connected with Neolithic
Farmers (‘Anatolian Farmers’). Between about 6000–4000 BC the genetic ancestry in Europe becomes predominantly related to the populations from around Anatolia and the Aegean. From about 3000–2500 BC ancestry related to populations from the Western Pontic Steppe becomes predominant in northern and central Europe but less so in southwestern Europe. The shift in ancestry in Britain that has dominated recent media interest occurs during the Neolithic to Bronze Age transition during the third millennium BC. Here the change is from largely Anatolian Farmer ancestry to a predominance of Western Steppe ancestry. From around 2400 BC in Britain, 50–60% of ancestry becomes derived from people whose ancestors had been living on the Steppe around 500 years previously, resulting by around 2000 BC in a 90% shift to Western Steppe ancestry in Britain. This shift in ancestry persists up to today. It has been associated with Corded Ware cultural traditions and potentially with Indo-European languages. From this it is inferred that migrations of groups influenced the development of the Beaker cultural practices in Britain.

Tom discussed the popular narratives that have risen out of this data among the press, partly through the interpretations of some archaeogeneticists (including the 2019 New Scientist Story on the Yamnaya). These characterise this change in genetic ancestry as being sudden, violent and exclusively male driven, based on ideas from inferred Indo-European patterns of behaviour, with marauding young men as the mechanism of genetic migration, subjugating local men and marrying the women. As Tom clearly explained, the aDNA tells us one set of information, but it cannot tell you about the nature of genetic change, why it took place or how violent the transition might have been. During the period of transition, we find little evidence for interpersonal violence. Relations may not have been cordial but evidence does not suggest they were endemically violent.

As Tom went on to explain, this period of migration was complicated. People came from varied parts of Europe, and there was some local admixture, i.e., between people with local Neolithic ancestry and migrants. In the Chalcolithic to Early Bronze Age there were some individuals who are outliers, with more Anatolian farming ancestry. Some of these outliers could be migrants to Britain from southern parts of Europe, where Steppe ancestry had less effect. There is also a persistence of an archaeologically invisible population descended from the Neolithic communities, who are only visible through a resurgence in ‘Neolithic’ ancestry from about 2100 BC. Individuals with Steppe ancestry were buried in archaeological accessible ways, whereas the late Neolithic population practiced cremation, placing them beyond the reach of successful aDNA analysis.

These were not completely bounded groups: they were occasionally having children with each other but more often having children within their groups. Perhaps language and cultural differences or traditions created this separation. The genetic shift occurred over a time span of 10–16 generations (much more gradual than a model of marauding men would imply) and involved the movement of both men and women. A possible demographic decline in the Late Neolithic may also have reduced the population density thereby shortening the duration of the local ancestry. This might relate to new diseases, or lifestyle changes that affected infant mortality. A slight difference between incoming and local populations could, over generations, have had a big impact on the proportions of ancestry present. The data shows different groups living next to each other and migrations from multiple places in Europe that eventually came together to form a more homogenous local genetic population.

To discuss the complexity of familial relationships and genetic connections in Neolithic and Bronze Age Britain, Tom moved on to discuss a selection of examples from southern England from the Amesbury Down burials to the young adults at Trumpington, Cambridgeshire (for more detail, Booth and Brück’s recently published article in the Cambridge Archaeological Journal). In brief, the evidence shows a variable pattern as to whether people were buried with closely related family members, but there is a slight bias towards people who were buried in visible ways being biologically related. For example, 10 out of 21 of the early Bronze Age individuals sampled in Wiltshire were close relatives, including 6 out of the 11 people buried at Amesbury Down. However, there is no evidence for exclusive family burial plots, with examples of paternal relatives being buried quite far apart and other instances where paternal cousins were buried together. All of these individuals carry no genetic ancestry from the local Neolithic population of Britain. Here was a community carrying continental ancestry, moving into Britain and having children among themselves.

The significance of biological relatedness is variable and context specific. For example, the aDNA of the Boscombe Bowmen showed that two of the individuals in this grave (an articulated burial and a skull found at his feet) were paternal cousins but interestingly their ancestry was very different, even though both have isotopic signatures that suggest they came from elsewhere, perhaps Brittany. The main articulated burial was a man whose mother had Anatolian Farmer ancestry (perhaps from further south e.g., Iberia), whereas his cousin’s parents were both of Steppe ancestry. Across generations there are potentially quite significant long-distance movements of individuals and families.

To conclude, there is no doubt that a significant shift in genetic ancestry occurred in Britain from 2450–2100 BC but the integration of the genetic data with the archaeological evidence is complex. Tom’s presentation was an important reminder of the complexities in our archaeological data and the risk of subjectivity in the ways this evidence is interpreted. He swept us through a wealth of data and clearly described the results and their interpretation. All who attended this fascinating lecture left with a greater appreciation and understanding of the role that aDNA research can play in describing the prehistory of Britain in its European setting. This innovative research benefits from the enthusiasm and dedication of scientists like Tom who can communicate across disciplines and understand the challenges yet still draw convincing conclusions. Thank you, Tom.

Sophia Adams (sadams@britishmuseum.org),
British Museum
Black Cat Quarry, Bedfordshire: a late third and early second millennia cal BC domestic site in eastern England

Recent studies of Britain in the late third and early second millennia cal BC have paid limited attention to domestic activity, largely due to the difficulty of identifying settlement sites. Evidence for houses associated with Beaker pottery has proved elusive with the examples that survive usually on prehistoric land surfaces which have been protected from erosion. Assessment of features with Beaker and Early Bronze Age pottery excavated by Archaeological Research Services Ltd between 2013 and 2019 at Black Cat Quarry in Bedfordshire provides some insight into the nature of settlement and economy in eastern England during this period.

The excavations were undertaken on behalf of Breedon Group PLC in advance of mineral extraction over a c. 50 ha area on the gravel terraces fringing the west bank of the River Great Ouse, bounded to the west by the Black Cat Roundabout and the A1. Neolithic activity was confined mainly to the northern half of the site. This comprised an unaccompanied adult male inhumation radiocarbon dated to 5102±23 BP (SUERC-90930: 3878–3803 cal BC at 95% probability) and pits containing Peterborough Ware and Grooved Ware pottery; a piece of deer antler from one of the three Grooved Ware pits gave a radiocarbon date of 3918±24BP (SUERC-90604: 2475–2340 cal BC at 95% probability). Eleven pits, two post holes and an occupation ‘floor’ containing Beaker pottery, with three features also producing Early Bronze Age pottery, were found in the southern half of the site, along with a further fifteen pits or irregularly-shaped features. The features occurred in four clusters of mainly two or three pits, occupying an area of c. 12 ha which is truncated in the south-western part of the site by a Roman farmstead.

Location of Neolithic–Early Bronze Age features
Six of the Beaker pits and the post holes were found on the higher terrace. The remaining pits and the occupation 'floor' were located on the lower terrace and near a palaeochannel, the fills of two of these pits contained birch charcoal which gave a radiocarbon date of 3741±34 BP (SUERC-69234: 2290–2030 cal BC at 95% probability) and charred hazelnut shell which was radiocarbon dated to 3655±34 BP cal BC (SUERC–69233: 2140–1940 cal BC at 95.4% probability). The occupation 'floor' consisted of a circular feature with a central pit, extended subsequently to the north. The central pit and much of the base were sealed by a deliberately deposited layer. A pit and post hole were cut into the base to the north of the edge of the deposited layer, suggesting that the feature was once partially covered and served as a working area prior to being deliberately infilled with material, probably derived from nearby, that contained abraded Beaker and Early Bronze Age pottery. A charred beech twig from the top of the fill of the pit covered by the infill material produced a radiocarbon date of 3236±34 BP, 1600–1400 cal BC) copper alloy side-looped and socketed spearhead was also deposited when the occupation 'floor' was backfilled. Occupation of the site appears to have ended in the 15th century cal BC at a time when the water table was rising, which may have contributed to the abandonment of the site. The deposition of the copper alloy spearhead during the final period of use is likely to have been deliberate; certainly, spearheads of this type are often found in 'watery' contexts.

Over 200 pottery fragments were recovered representing at least five comb-impressed and ten rusticated Beaker vessels and three Early Bronze Age vessels. Worked flints included debitage, scrapers, knives, piercers, fabricators and both triangular and barbed-and-tanged arrowheads; the multiplicity of flint implements suggests that a range of food processing and craft activities were undertaken at the site. Animal bone totaled 36 fragments and comprised mainly cattle at least 2–2½ years old, a significant proportion of which had been butchered and burnt indicating that animal carcasses were processed and cooked at the site. Red deer, sheep-size specimens and the articulating elements of an adult dog were also recovered. Palaeoenvironmental material included charred cereal grains (indeterminate wheat and barley) and weeds of cultivation (e.g., corn cleaver), whilst charcoal remains indicated a woodland environment within the vicinity of the site.

The material from the features by the palaeochannel is distinctive. The pottery fragments are small in size and abraded, sometimes heavily abraded; half of the animal bones were in poor condition and some had been gnawed by carnivores, suggesting the presence of working areas and middens at the site that were accessible to animals. Whilst the function of the pits and the occupation 'floor' is unclear, they were also all infilled with material that had probably accumulated on the ground surface and in middens that were located nearby. The post holes situated on the higher terrace may be all that remains of structures. Domestic activities, animal husbandry and cereal cultivation, including manuring, were practised during at least a 500 year time-frame, potentially with shifts in the focus of settlement over time and specific activities taking place in certain parts of the site, for example animal butchery near the palaeochannel.

These remains are comparable to those found during excavations elsewhere in eastern England. Sites with Beaker pottery often continued to be occupied throughout the Early Bronze Age. Shallow pits are often found alone or in clusters. Often fragments of pottery and animal bone are abraded and in poor condition, indicating that they were discarded on the ground surface and/or middens. As at Black Cat Quarry, there is often spatial segregation of Beaker features from those dating to the Neolithic period. At least five other sites had occupation 'floors', interpreted as outdoor working areas, situated close to water and which appear to be features unique to eastern England. The maintenance of activity areas and accumulation of middens suggests that living areas were kept clean and rubbish was disposed of elsewhere. This is more likely to be associated with sedentary rather than short-stay sites. In some areas, and perhaps for certain periods, short-term occupation by communities practising a form of shifting agriculture or transhumance may have taken place during the late third–mid-second millennia cal BC, although a strong argument can also be made for permanent settlement by households within specific parts of the landscape.

Late third–mid-second millennia cal BC occupation sites, in the absence of structures, can be represented by the remains of domestic activity in the form of midden material and concentrations of ceramic and lithic debris with animal bone and charred plant remains. Given that midden material was probably spread on cultivated areas as manure and that some Beaker and Early Bronze Age vessels were poorly-fired, pottery fragments are less likely to survive unless protected by later deposits; it is thus not surprising that recognising Beaker and Early Bronze Age settlement remains has hitherto proved elusive. Land alongside rivers was a favoured location for settlement, animal husbandry and cereal cultivation. Unless the fertility of cultivated land is maintained through practices such as manuring, then fields would have been abandoned, which may account to a certain...
extent for the apparent shifting nature of domestic sites. Whilst early Beaker occupation sites are rare, the number of sites dating from the 22nd century cal BC in eastern England is substantial and suggests widespread settlement which may also reflect the distribution of round barrows. This, along with the establishment of freshly-settled areas, notably along watercourses, could reflect the population movements indicated by recent ancient DNA and isotopic analysis of human burials.

Robin Holgate (robin@archaeologicalresearchservices.com), Archaeological Research Services Ltd

Idols, ards and severed heads: three thousand years of deposition in a Roscommon fen

In July 2021 archaeologists from Archaeological Management Solutions (AMS) hit the headlines with the discovery of a late Iron Age anthropomorphic notched figure from a riverside fen at Gortnacrannagh, Co. Roscommon in the west of Ireland. The artefact, almost 3 m long and carved from oak, yielded a date of cal AD 252–413 (1715±28 BP; UBA-43937), making it the latest such figure to have been found in Ireland. Beyond its rarity and late date, the figure is significant because of the rich archaeological context in which it was found. Excavations at Gortnacrannagh lasted a year, uncovering a complex site with evidence for several millennia of wetland deposition.

Gortnacrannagh lies on a south-facing glacial ridge overlooking the Owenur River, some 6 km north-east of the prehistoric archaeological complex and mythological royal site of Rathcroghan. Activity at the site extended from at least the Late Neolithic to the early medieval period, with a focus in the Bronze Age and Iron Age. Wetland deposition was in evidence from the Neolithic, with the placement of Grooved Ware pottery, shale cores, and lithics into the water. During the Late Bronze Age and Iron Age a series of overlapping wood and stone platforms (Area 3) and a wooden trackway (Area 2) were built in the fen. The platforms lay on the interface between the wetland and dryland, creating an extensive arena of activity c. 40 by 17 m east–west. The trackway ran perpendicular to the shore, extending 45 m east into the deepest part of the fen toward the river.

Prehistoric and medieval activity was also in evidence on the adjacent dryland. A penannular ring ditch with an overlying post circle was found on the south-facing slopes overlooking the fen. Undated iron working evidence was found in the vicinity, and a single east–west supine burial was uncovered immediately to its west. Later, a key-hole shaped cereal-drying kiln of probable medieval date was built in the centre of the ring-ditch.

The wetland yielded a significant assemblage of artefacts. Finds from the Area 3 platforms include a Late Bronze Age disk-headed pin, a wooden ard, an iron dagger with bone handle, a perforated bone disc, wooden vessel fragments, a
copper-alloy ring, bone pins and other carved bone objects, unidentified wooden objects, worked antler, bone/tooth pendants, as well as flint, chert and coarse stone tools. Some of these finds appear to relate to activities carried out on the platforms, while others are interpreted as deliberate depositions. The Area 2 trackway also contained multiple deposits of artefacts. Finds include wooden vessel fragments, an iron socketed projectile, an iron socketed knife, a broken iron blade with a wooden handle, a wooden yoke, a perforated wooden plank, bone pins, and an early medieval ring-headed copper-alloy pin.

Arguably the most significant find from the site is the Iron Age anthropomorphic wooden figure. The figure was found ‘face down’ in well-humified peat c. 10 m west of the Area 3 platforms. The surviving portion is 2.84 m long but was originally longer. Nine notches are carved along its length, and the middle part of the figure is slightly tapered in a manner suggestive of a waist or hips. Both neck and head are heavily damaged. The back of the figure is convex and very rough, and no finishing or wood working is in evidence. The morphology of the figure with its distinctive notched body places it among a corpus of similar figures from Ireland and northwest Europe. The best-known Irish figures are from the Offaly bogs (Cloncreen and Ballykean). These figures parallel the Gortnacrannagh example in form but differ in scale and date. The Offaly figures are smaller and all date to the Early or Middle Bronze Age. This raises tantalising questions regarding continuity of practice over what is generally considered significant cultural disruption at the end of the Late Bronze Age.

So far, the only other dated object from Gortnacrannagh is the ard fragment. The object was found on the northern edge of the Area 3 platforms. It is a poorly preserved curved ash timber (L: 470 mm; W: 65 mm – 130 mm) with a rectangular slot (L: 110 mm; W: 60 mm), the socketed end of an ard beam, through which a wooden ard sheer would have been held. The object yielded a radiocarbon date, of cal AD 80–214 (1896±21 BP; UBA-45242), relatively close in date to the anthropomorphic figure.

Large quantities of animal bone were retrieved from both the platforms and trackway. Fully articulated remains included a red deer found close to the western edge of the Area 3 platforms, a dog close by, and two dogs at the northern edge of Area 2 trackway. The ribcage of a large mammal was found buried within that trackway. On-site assessment indicates the presence of cow, sheep/goat, pig, deer, dog, and horse. Disarticulated bones dominate the assemblage. Many bear cut marks suggesting they were slaughtered and/or butchered on site. The discovery of an iron dagger with bone handle and a well-worn whetstone on the stone platform in Area 3 is significant in this regard. The dagger comprises a long slender blade (L: 140 mm; W: 14 mm). Its accompanying handle is of carved bone (L: 100 mm). The dagger is morphologically similar to modern ‘sticking-knives’ used to kill animals by severing the carotid arteries and jugular veins. The large quantity of butchered animal bone coupled with the deposition of articulated animal heads and entire bodies suggests animal sacrifice. As with historically and anthropologically attested examples this may have included feasting.
In addition to the animal remains and artefacts, multiple fragments of unburnt human skulls were deposited into the wetland at Gortnacrannagh. In total, eleven individual human skull fragments were found, nine in the Area 2 trackway, one in Area 3, and one in an isolated position between the two. Initial on-site inspection identified both adults and juveniles. The fragments from the trackway were deposited close to a cluster of animal skulls and artefacts, potentially representing a single episode of deposition. Further west, a single skull fragment was found buried within a stone platform in Area 3. The isolated skull from between the two areas comprised a complete cranium but with no mandible. These suggest the deliberate curation and selection of appropriate human remains for deposition at the site, and differential treatment of the remainder of the corpses, which were disposed of elsewhere.

The post-excavation analysis from Gortnacrannagh is still at an early stage and much remains to be done in terms of fully disentangling the story of the site. Gortnacrannagh was undoubtedly marked as a special place in the landscape and deemed appropriate for the deposition of carefully selected objects including human remains. Like the wooden figure, some of the other artefacts found at Gortnacrannagh illustrate practices and beliefs shared across wide geographical areas and for seemingly long periods. With the completion of post-excauation analysis and specialist reporting we look forward to the insights that we believe the site and its assemblage have the potential to bring to multiple important questions.

Eve Campbell (eve.campbell@ams-consultancy.com) and Ros Ó Maoldúin, Senior Archaeologists, Archaeological Management Solutions

Examining Neolithic mortuary treatment in caves: Ogof Colomendy, North Wales

Despite important developments, Neolithic cave burial has been marginalised in research compared to monumental burial. This is largely due to the problematic nature of evidence in terms of complex taphonomy and poor chronology. Although remains are frequently unstratified they should not be ignored and make a major contribution to the corpus of human remains from Neolithic western Britain.

Ogof Colomendy, Gwernymynydd, Flintshire, is situated on a limestone outcrop. The cave extends c. 3 m to form a short passage. Quarrying in the area, disturbances by cavers and multiple excavations have altered the original context. A constructed wall constitutes the border of the former extent of the cave (possible intentional blocking). A series of excavations (1975–77) were led by Mel Davies alongside
members of the caving community, and by the Clwyd Powys Archaeological Trust in 2015. Unstratified human remains of approximately three individuals, animal bones (predominantly domestic species), a corroded iron implement, a fragment of a clay pipe and two pieces of patinated flint were identified. Human remains were reported as ‘peculiarly fractured’ with the animal remains being similarly treated. The assemblage has interested earlier researchers who considered it an act of deliberate post-mortem processing.

The provision of new radiocarbon dating evidence was considered essential to clarify the period of use for burial of this highly disturbed site and understand whether depositions were made simultaneously. One human bone fragment from an adult or adolescent had been dated to the late Middle Neolithic (3320–2910 cal BC; SUERC 66486, 4408±33 BP) and an adult humerus to the Early Bronze Age (1940–1740 cal BC; OxA-16523, 3518±35 BP) suggesting a multi-period use of this site. Two more long bones, sampled for the purposes of the author’s PhD research, an adult femur and an adolescent humerus produced Late Neolithic (2860–2490 cal BC; SUERC-97578, 4081±26 BP) and Early/Middle Bronze Age dates (1670–1500 cal BC; SUERC-97579, 3314±26 BP) respectively.

Demographic information from reanalysis of the remains by the author revealed a minimum of five individuals (three adults, one adolescent and one younger adult/possible adolescent). Osteological analysis further demonstrated an abundance of post-cranial (N=180) as opposed to cranial/skull remains (N=12), and the absence of complete crania. A single cranium was discovered in fragments. Three burnt cranial fragments and loose teeth (N=34) were also present, with the vast majority of disarticulated elements being fragmented.

Macroscopic taphonomic analysis revealed signs of weathering (N=10) primarily on post-cranial remains and one mandible and extensive evidence of gnawing (N=63) on long bones (N=35). Bones deposited in caves rarely demonstrate weathering marks and therefore any sign of weathering suggests short sub-aerial exposure before final burial or sub-aerial deposition close to the entrance of the cave. Surface staining (N=138), erosion/root etching (N=81) and abrasion (N=49), resulting from the depositional environment, had affected long bones and flat/irregular bones (comprising of ribs, clavicles, scapulae, sternum and the pelvis girdle) as the frequencies of these elements were much higher in the total assemblage. Evidence of trauma was recorded on one humerus (peri-mortem cutmark on diaphysis) and fractures were observed on five loose teeth possibly resulting at a later state during manipulation, re-burials and/or movement of the bones in the cave. Distinct surface preservation and presence/absence of macroscopic modifications suggests that human remains were either impacted by these agents at different periods or from exposure to distinct environments. Multi-stage burials were often practiced during the Neolithic, suggesting that caves could have easily been used as part of this practice with remains either brought to the site collectively or at different episodes.

Fracture analysis of the long bones and shafts (N=29), often accompanied by gnawing (N=16), demonstrated both dry/mineralised post-depositional fractures (N=13) and fresh peri-mortem breaks (N=13) and/or both dry and fresh breaks (N=3). This mosaic pattern suggests that some fractures resulted from later disturbances and/or circulation of bone whilst fresh breaks resulted during primary burial either at the site or elsewhere before deposition in the cave. Frequent disturbances in the cave could have been responsible for the fragile state of both animal and human remains, however, both fresh and dry fractures were found in abundance. Disarticulation and circulation of bone is a practice often encountered amongst Neolithic assemblages suggesting possible taphonomic re-elaboration (exhumations and reburials) as exposure in different depositional environments produces an amalgam of distinct taphonomy and in this case, distinct fracture morphologies.

Microscopic taphonomic analysis, through thin section light microscopy, of one Late Neolithic femur and two Bronze Age humeri showed extensive bacterial attack. This suggests that soft tissue degraded underground rather than sun-aerially, allowing enteric gut bacteria to attack the bone. Elements had further been infiltrated by extraneous material suggesting that the depositional environment affected the preservation of the microstructure. The Late Neolithic femur and an Early Bronze Age humerus exhibited fresh fractures whilst the Early/Middle Bronze Age humerus had a dry fracture suggesting bones and bodies were disturbed or manipulated at different phases during the process of decomposition. Given the multi-period use of this site, skeletal representation and taphonomic modifications, depositions in Ogof Colomendy were subject to a complex taphonomic trajectory (both peri- and post-mortem). Continued use of the site (possibly similarly to a vault) took place over a period of time with long bones being processed, fractured and deposited/left in the cave. This pattern demonstrates how complex multi-stage burials must have been and that caves could have functioned as centres for the circulation of remains.

Comparisons between sites in North Wales and other caves across Wales will be further examined as part of larger PhD research by the author to clarify whether this pattern is replicated at other sites (four out of twenty caves) of Neolithic and Bronze Age date.

Acknowledgements

Generous funding for radiocarbon dating of this site was provided by the Prehistoric Society. Special thanks to National Museum Wales for access to their collections and my supervisors, Dr Richard Madgwick and Professor Jacqui Mulville, for their constant support.

Eirini Konstantinidi (konstantinidie1@cardiff.ac.uk),
Cardiff University
Member communications survey

In light of rising costs and with a mind to environmental sustainability, the Prehistoric Society are reviewing the ways in which we communicate with members in print. Our newsletter PAST is one of the most valued benefits of membership but is also relatively expensive, with the cost of printing and posting each edition costing more than £2000. In addition, more than 50% of your subscription goes towards the costs of production and distribution of the Proceedings.

We would like member’s thoughts on the future of the PAST newsletter and the Proceedings journal. Please head online to fill out our survey, or alternatively fill out the survey below and return to the membership secretary below at the address on the front cover. The deadline for responses is Monday 16 May 202.

Link to survey: https://forms.gle/JtArbRdcAkDEcN877

1) The Prehistoric Society could save costs relating to PAST newsletter in one of three ways. Please indicate your preference for these in order (numbering these 1, 2 and 3, with 1 being your most preferred option):
 - Introducing advertising from appropriate partners and organisations (2–3 adverts per edition)
 - Moving to online only publication, with e-mail reminders sent when a new edition is available
 - Reducing down from three to two editions each year

2) In line with many other journals, our publishers Cambridge University Press are suggesting that we offer two membership tiers, with a digital only option – that is, the option to receive the entire journal as a downloadable file rather than a print copy (individual papers will continue to be freely available to members via Cambridge Core). How would you prefer to receive your full copy of PPS in future? Please indicate your order of preference again (1, 2 and 3):
 - Paper, with individual papers available freely to members only
 - Digital only (downloadable PDF)
 - Digital (downloadable PDF) with option to purchase additional hard copy

3) How would you prefer to receive society news (e.g. events, conference reports, council news) from the Prehistoric Society? Again, please indicate your preferences:
 - In PAST newsletter (paper and online)
 - E-mail newsletter
 - Social media (Facebook and Twitter)

4) Please use this space to provide any other feedback on PAST, PPS or communications with members:

The deadline for submissions for PAST 101 is 9 May 2022. Contributions to Editor, Susan Greaney, English Heritage, Bristol UK. Email: past@prehistoricsociety.org. Contributions as e-mail attachments are preferred (either .docx or .rtf files) with illustrations sent as .jpeg, .tif or .pdf files. The book reviews editor is Pippa Bradley, 23 Feversham Road, Salisbury, SP1 3PP. E-mail: reviews@prehistoricsociety.org. Queries over subscriptions and membership should go to the Society administrator at the London address on the front cover. E-mail: t.machling@ucl.ac.uk.